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Lp-Theory of the Stokes equation in a half space

Wolfgang Desch, Matthias Hieber and Jan Prüss

Abstract. In this paper, we investigateLp-estimates for the solution of the Stokes equation in a half spaceH

where 1≤ p ≤ ∞. It is shown that the solution of the Stokes equation is governed by an analytic semigroup
on BUCσ (H), C0,σ (H) or L∞

σ (H). From the operatortheoretical point of view it is a surprising fact that the
corresponding result forL1

σ (H) does not hold true. In fact, there exists anL1-functionf satisfyingdivf = 0 such
that the solution of the corresponding resolvent equation with right hand sidef does not belong toL1. Taking into
account however a recent result of Kozono on the nonlinear Navier-Stokes equation, theL1-result is not surprising
and even natural. We also show that the Stokes operator admits aR-boundedH∞-calculus onLp for 1 < p < ∞
and obtain as a consequence maximalLp–Lq -regularity for the solution of the Stokes equation.

1. Introduction

In this paper, we consider the Stokes equation in a half spaceH := R
n+1+ , i.e. we

consider the set of equations

ut − 1u + 5p = f in H × (0, ∞)

div u = 0 inH × (0, ∞)

(1.1)
u = 0 on∂H × (0, ∞)

u(0) = u0

whereu = (u1, . . . , un, un+1)
T is interpreted as the velocity field andp as the pressure. We

are interested in theLp-theory of the solution of (1.1) where 1≤ p ≤ ∞. If 1 < p < ∞,
one usually defines the subspaceL

p
σ (H) of Lp(H) consisting of all solenoidal functionsf

in Lp and associates to (1.1) the so-called Stokes operatorA in (L
p
σ (H))n+1 defined as

Au := P1u

D(A) := (W2,p(H) ∩ W
1,p

0 (H) ∩ Lp
σ (H))n+1.

HereP denotes the Helmholtz projection inLp(H). Then it is well known that the Stokes
operatorA generates an analytic semigroup onL

p
σ (H) for 1 < p < ∞ (see for instance
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[Sol77], [McC81], [Uka87]). It seems to be unknown whether system (1.1) is also solvable
in L1(H) or L∞(H). Observe that the Helmholtz projection is not bounded inL1(H) or
L∞(H). Thus the usual decomposition ofLp(H) in L

p
σ (H) and its orthogonal complement

which is true for 1< p < ∞ is no longer possible ifp = 1 orp = ∞.
The strategy we use to solve the Stokes system and to get sharp regularity results

on the resolvent is the following: Taking Fourier transforms we obtain a representation
of the solution of the corresponding resolvent equation as a sum of two terms, the first
being the resolvent of the Dirichlet Laplacian onLp(Rn+1+ ), the second one being a remain-
der term. In Section 3 we derive pointwise upper bounds on the remainder term which
allow to proveL∞-estimates for the solution of the corresponding resolvent problem, i.e.
we obtain estimates of the form

‖u‖∞ ≤ M

|λ| ‖f ‖∞

for the equation defined below in (2.1), whereλ belongs to a suitable sector in the complex
plane.

The above estimate allows us to prove that the Stokes operator generates an analytic
semigroup on the spacesBUCσ (H), C0,σ (H), L∞

σ (H), which is, of course, not strongly
continuous in the latter case.

The casep = 1 is of special interest, see [GMS99], [Koz98] and [Miy97]. In Section 5
we give an example of a functionf ∈ L1(Rn+1+ )n+1 satisfying divf = 0 such thatu 6∈
L1(Rn+1+ )n+1, whereû is the solution of the resolvent equation (2.1) defined below. This
implies in particular that there isnoestimate of the form

‖u(t, ·)‖1 ≤ C‖u0‖1 (1.2)

for the solution of the Stokes Problem (1.1) withf = 0. This is remarkable because the
solution of the Stokes equation on all ofR

n satisfies an estimate of form (1.2). Taking into
account however a recent result of Kozono [Koz98] on the equations of Navier-Stokes for
exterior domains one does not expect an estimate of form (1.2) to hold true. Indeed, he
showed that the existence of a local strong solution of the Navier-Stokes equations inL1

implies that no force could act on the boundary of the domain which would mean that the
Navier-Stokes equations are physically meaningless. Thus, from this point of view one
does not expect that (1.2) holds true. However, the pointwise upper bound on the remainder
term allows us to prove an estimate of the form

‖∇u(t, ·)‖1 ≤ C
1

t1/2
‖u0‖1

for the solution of (1.1) withf = 0 which was proved first in [GMS99].
The pointwise upper bound on the remainder term allows us also to show that for 1<

p < ∞ the Stokes operator admits a boundedH∞-calculus onLp(H)n+1. In fact, even a
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stronger result is true: In Section 7 we prove that the Laplacian onR
n and the remainder

term even admit anR-boundedH∞-calculus onLp(H)n+1 for 1 < p < ∞. Thus the
Stokes operator admits anR-boundedH∞-calculus onLp(H)n+1. As a consequence, we
obtain maximalLp–Lq -regularity for the solution of the Stokes equation (1.1).

For more information on the role of the Stokes semigroup in the theory of the Navier-
Stokes equations, we refer to the recent article of Amann [Ama00] and the survey article
by Wiegner [Wie99].

NOTATIONS AND CONVENTIONS. Throughout this paper, we define for 0< θ ≤ π

the sector6θ in the complex plane by6θ := {z ∈ C\{0}; |argz| < θ}. If X andY are
Banach spaces,L(X, Y ) denotes the space of all bounded, linear operators fromX to Y ;
moreover,L(X) := L(X, X). The spectrum of a linear operatorA in X is denoted byσ(A).
Givenp ∈ [1, ∞), we denote by

Lp
σ (H) := {f ∈ C∞

c (H); div f = 0}−‖·‖Lp

the Banach space of all solenoidal functions inLp(H). If 1 < p < ∞, then

Lp(H) = Lp
σ (H) ⊕ Gp(H),

whereGp(H) consists of all functionsf ∈ Lp(H) for which there existsg ∈ L
p

loc(H) such
thatf = ∇g. The projectionP : Lp(H) ontoL

p
σ (H) is called the Helmholtz Projection.

By C, M andc we denote various constants which may differ from line to line, but which
are always independent of the free variables.

2. The resolvent problem for the Stokes problem

In this section we consider the resolvent equation for the Stokes problem in the half
spaceH := R

n+1+ := {(x, y) ∈ R
n+1; x ∈ R

n, y > 0}. Givenp ∈ [1, ∞], λ ∈ ∑π and
f ∈ Lp(Rn+1+ )n+1 with div f = 0, find a velocity fieldu = (u1, . . . , un, un+1)

T and a
pressure fieldp such that

λu − 1u + 5p = f in H,

div u = 0 in H, (2.1)

u|∂H
= 0.

For x ∈ R
n andy > 0 we writeu = (v, w)T with v = (v1, . . . , vn)

T andf = (fv, fw)T

with fv = ((fv)1, . . . , (fv)n)
T . Assume thatfw(ξ, 0) = 0 for all ξ ∈ R

n. Applying the
Fourier transform with respect tox we obtain

(λ + |ξ |2)v̂(ξ, y) − ∂2
y v̂(ξ, y) = f̂v(ξ, y) − iξ · p̂(ξ, y), ξ ∈ R

n, y > 0 (2.2)

(λ + |ξ2|)ŵ(ξ, y) − ∂2
y ŵ(ξ, y) = f̂w(ξ, y) − ∂yp̂(ξ, y), ξ ∈ R

n, y > 0 (2.3)
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iξ · v̂(ξ, y) + ∂yŵ(ξ, y) = 0, ξ ∈ R
n, y > 0 (2.4)

v̂(ξ, 0) = 0, ξ ∈ R
n (2.5)

ŵ(ξ, 0) = 0, ξ ∈ R
n. (2.6)

Multiplying equation (2.2) byiξ , applying∂y to (2.3) and adding them yields

|ξ |2p̂(ξ, y) − ∂2
y p̂(ξ, y) = −∂yf̂w(ξ, y) − iξ f̂v(ξ, y)

= −( div f )ˆ(ξ, y) = 0

for ξ ∈ R
n andy > 0, where we already took into account equation (2.4). Hence

p̂(ξ, y) = e−|ξ |yp̂0(ξ), ξ ∈ R
n, y > 0

for some functionp̂0. We thus obtain for̂v andŵ the following representations

v̂(ξ, y) = 1

2ω(ξ)

∞∫
0

[e−ω(ξ)|y−s| − e−ω(ξ)(y+s)]

(2.7)
[f̂v(ξ, s) − iξe−|ξ |s p̂0(ξ)] ds,

ŵ(ξ, y) = 1

2ω(ξ)

∞∫
0

[e−ω(ξ)|y−s| − e−ω(ξ)(y+s)]

(2.8)
[f̂w(ξ, s) + |ξ |e−|ξ |s p̂0(ξ)] ds,

for ξ ∈ R
n, y > 0 and whereω(ξ) := (|λ| + |ξ |2) 1

2 for ξ ∈ R
n. In order to determinêp0

consider∂yŵ(ξ, y) aty = 0, i.e.

∂yŵ(ξ, 0) =
∞∫

0

e−ω(ξ)s [f̂w(ξ, s) + |ξ |e−|ξ |s p̂0(ξ)] ds = 0, ξ ∈ R
n.

This implies that

p̂0(ξ) = − (ω(ξ) + |ξ |)
|ξ |

∞∫
0

e−ω(ξ)s f̂w(ξ, s) ds, ξ 6= 0. (2.9)

By assumption,iξ · f̂v(ξ, y) + ∂yf̂w(ξ, y) = 0 for ξ ∈ R
n andy > 0. Integrating by parts

yields

−ω(ξ)

∞∫
0

e−ω(ξ)s f̂w(ξ, s) ds =
∞∫

0

d

ds
(e−ω(ξ)s)f̂w(ξ, s) ds

=
∞∫

0

e−ω(ξ)s(iξ) · f̂v(ξ, s) ds.
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Thus

f̂ L
w (ξ) :=

∞∫
0

e−ω(ξ)s f̂w(ξ, s) ds =

(2.10)

− iξ

ω(ξ)

∞∫
0

e−ω(ξ)s f̂v(ξ, s) ds =:
−iξ

ω(ξ)
f̂ L

v (ξ)

for all ξ ∈ R
n. Inserting (2.9) and (2.10) into (2.8) and (2.7) we obtain

v̂ = v̂1 + v̂2

(2.11)
ŵ = ŵ1 + ŵ2

with v̂1, v̂2 andŵ1, ŵ2 given forξ ∈ R
n andy > 0 by

v̂1(ξ, y) = 1

2ω(ξ)

∞∫
0

[e−ω(ξ)|y−s| − e−ω(ξ)(y+s)]f̂v(ξ, s) ds

v̂2(ξ, y) = 1

2ω(ξ)

∞∫
0

[e−ω(ξ)|y−s| − e−ω(ξ)(y+s)]

(iξ)

|ξ | e−|ξ |s(ω(ξ) + |ξ |) dsf̂ L
w (ξ)

= iξ

|ξ |
1

ω(ξ) − |ξ | [e
−y|ξ | − e−ω(ξ)y ]f̂ L

w (ξ)

= 1

(w(ξ) − |ξ |)|ξ |w(ξ)
[e−y|ξ | − e−w(ξ)y ](ξ · f̂ L

v (ξ))ξ

ŵ1(ξ, y) = 1

2ω(ξ)

∞∫
0

[e−ω(ξ)|y−s| − e−ω(ξ)(y+s)]f̂w(ξ, s) ds

ŵ2(ξ, y) = −1

ω(ξ) − |ξ | [e
−y|ξ | − e−ω(ξ)y ]f̂ L

w (ξ)

= iξ

ω(ξ)
· 1

ω(ξ) − |ξ | [e
−y|ξ | − e−ω(ξ)y ]f̂ L

v (ξ).

Observe that

v1 = (λ − 1D)−1fv, w1 = (λ − 1D)−1fw,



120 wolfgang desch, matthias hieber and jan prüss J.evol.equ.

where1D denotes the Laplacian inRn+1+ subject to zero Dirichlet boundary conditions. It
is well known that for 1≤ p ≤ ∞ andλ ∈ 6θ with θ < π there exists a constantM > 0
such that

‖v1‖Lp(Rn+1+ )n
≤ M

|λ| ‖fv‖Lp(Rn+1+ )n

‖w1‖Lp(Rn+1+ )
≤ M

|λ| ‖fw‖
Lp(Rn+1+ )

.

Hence, in order to obtainLp-estimates forv andw we may restrict ourselves in the following
to the casesv2 andw2. TheLp-estimates forv2 andw2 will be derived from pointwise
upper bounds for the inverse Fourier transform ofv̂2 andŵ2.

3. Pointwise upper bounds for the remainder term

We proved in the previous Section 2 that

v = (λ − 1D)−1fv + v2

w = (λ − 1D)−1fw + w2

wherev2 andw2 are defined as in (2.11). In this section we derive pointwise upper estimates
for v2 andw2.

Let θ < π and definêrv : R
n × R+ × R+ × 6θ → C by

r̂v(ξ, y, y′, λ) := e−|ξ |y − e−ω(ξ)y

ω(ξ) − |ξ |
1

|ξ |ω(ξ)
ξξT e−ω(ξ)y′

, (3.1)

whereω(ξ) = √|λ| + |ξ |2. Define

rv(x, y, y′, λ) = 1

(2π)n

∫
Rn

eix·ξ r̂v(ξ, y, y′, λ)dξ. (3.2)

Note thatrv is well defined since the above integral is absolutely convergent for(y, y′) 6=
(0, 0).

Observe first that by the following scaling argument it suffices to consider the case
|λ| = 1 and|argλ| ≤ θ < π . In fact, the change of coordinates

ξ → |λ| 1
2 ξ, y → y

|λ| 1
2

, y′ → y′

|λ| 1
2

, x → x

|λ| 1
2

(3.3)

yield

r̂v(ξ, y, y′, λ) = 1

|λ| 1
2

r̂v

(
ξ

|λ| 1
2

, |λ| 1
2 y, |λ| 1

2 y′, λ

|λ|

)
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and hence

rv(x, y, y′, λ) = |λ| n−1
2 rv

(
|λ| 1

2 x, |λ| 1
2 y, |λ| 1

2 y′, λ

|λ|
)

.

For this reason, we may suppose now thatλ ∈ 6θ with |λ| = 1.
For z ∈ C consider next the functionφ given by

φ(z) = 1 − e−z

z
, z ∈ C\{0}

and note that

|φ(z)| ≤ C

1 + |z| , Rez ≥ 0 (3.4)

for a suitable constantC > 0. Thus

r̂v(ξ, y, y′, λ) = ye−|ξ |ye−ω(ξ)y′ 1

|ξ |ω(ξ)
ξξT φ((ω(ξ) − |ξ |)y).

Choose now a rotationQ in R
n such thatQx = (|x|, 0, . . . , 0) and write

Qξ = (a, rb), a ∈ R, r > 0, b ∈ R
n−1, |b| = 1.

By this coordinate transformation we obtain

rv(x, y, y′, λ) = cn

∞∫
0

rn−2
∫

Sn−1

∞∫
−∞

ei|x|a y√
λ + r2 + a2

√
r2 + a2

e−y
√

r2+a2

(3.5)

·e−y′√λ+r2+a2
φ(y(

√
λ + r2 + a2 −

√
r2 + a2))

(
a

rbT

)
( a rb ) dadbdr.

whereSn−1 is the unit sphere inRn−1.
Next, for ε > 0 small enough, we shift the path of integration fora to the contour

a → s + iε(r + |s|), s ∈ R, without changing the value of the integral thanks to Cauchy’s
theorem. Then

r2 + a2 = r2 + s2 − ε2(r + |s|)2 + 2iε(r + |s|)s.
Hence, givenε0 > 0, there exists a constantc > 0 such that forε ∈ (0, ε0) we have

c|r2 + a2| ≤ (r + |s|)2 ≤ 1

c
|r2 + a2|, r > 0, s ∈ R

and

|arg(r2 + a2)| ≤ cε, r > 0, s ∈ R.
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We thus obtain forx ∈ R
n, y > 0, y′ > 0 andλ ∈ 6θ with |λ| = 1 the bounds

|ei|x|a| = e−ε|x|(r+|s|),

|e−y
√

r2+a2| ≤ e−cy(r+|s|),

|e−y′√|λ|+r2+a2| ≤ e−cy′(1+r+|s|), |λ| = 1, |argλ| ≤ θ < π,∣∣∣∣∣
√

r2 + a2√|λ| + r2 + a2

∣∣∣∣∣ ≤ c
r + |s|

1 + r + |s|

|
√

|λ| + r2 + a2 −
√

r2 + a2| = 1√|λ| + r2 + a2 + √
r2 + a2

≥ c
1

1 + r + |s| .

Inserting these bounds into (3.5) yields for a multiindexα

|(∂x)
αrv(x, y, y′, λ)|

≤ M

∞∫
0

rn−2

∞∫
0

e−c(r+s)(|x|+y+y′)ye−cy′ (r + s)1+|α|

1 + r + s + y
dsdr

= Mye−cy′
∞∫

0

rn−2

∞∫
r

e−cs(|x|+y+y′)

1 + s + y
s1+|α| dsdr

= Mye−cy′
∞∫

0

sn+|α| e−cs(|x|+y+y′)

1 + y + s
ds

for some constantM > 0 independent ofx ∈ R
n, y, y′ > 0 andλ ∈ C with |λ| = 1 and

|argλ| ≤ θ < π. We thus have proved the following result.

PROPOSITION 3.1.Let θ ∈ (0, π) andα be a multiindex. Then there exist constants
M, c > 0 such that

|(∂x)
αrv(x, y, y′, λ)| ≤ Mye−cy′

∞∫
0

sn+|α|

1 + y + s
e−cs(|x|+y+y′) ds,

wherex ∈ R
n, y, y′ > 0 andλ ∈ C with |λ| = 1 and|argλ| ≤ θ < π .

REMARK 3.2. Forθ < π we definer̂w : R
n × R+ × R+ × 6θ → C

n by

r̂w(ξ, y, y′, λ) := e−|ξ |y − e−ω(ξ)y

ω(ξ) − |ξ |
iξ

ω(ξ)
e−ω(ξ)y′

(3.6)
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Copying the above proof we see that the assertion of Proposition 3.1 remains true ifrv is
replaced byrw, where

rw(x, y, y′, λ) = 1

(2π)n

∫
Rn

eix·ξ r̂w(ξ, y, y′, λ)dξ, x ∈ R
n, y, y′ > 0. (3.7)

The kernel estimates given in Proposition 3.1 and Remark 3.2 allow us to derive
Lp-estimates forv2 andw2 via the following lemma onLp-continuity of integral oper-
ators acting in half spaces.

LEMMA 3.3. Suppose that1 ≤ p ≤ ∞ and let 1
p

+ 1
p′ = 1. Let T be an integral

operator inLp(Rn+1+ ) of the form

(Tf )(x, y) =
∞∫

0

∫
Rn

k(x − x′, y, y′)f (x′, y′)dx′dy′, x ∈ R
n, y > 0,

wherek : R
n × R+ × R+ → C is a measurable function.

a) Let1 < p < ∞. If ∞∫
0

 ∞∫
0

‖k(·, y, y′)‖p′
1 dy′


p

p′

dy


1
p

=: M1 < ∞,

thenT ∈ L(Lp(Rn+1+ )) and‖T ‖L(Lp(Rn+1+ ))
≤ M1.

b) Letp = 1. If

sup
y′>0

∞∫
0

‖k(·, y, y′)‖1 dy =: M2 < ∞,

thenT ∈ L(L1(Rn+1+ )) and‖T ‖L(L1(Rn+1+ ))
≤ M2.

c) Letp = ∞. If

sup
y>0

∞∫
0

‖k(·, y, y′)‖1 dy′ =: M3 < ∞,

thenT ∈ L(L∞(Rn+1+ )) and‖T ‖L(L∞(Rn+1+ ))
≤ M3.
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Proof. a) By Young’s inequality and Ḧolder’s inequality we have

∞∫
0

∫
Rn

|Tf (x, y)|pdxdy

=
∞∫

0

∥∥∥∥∥∥
∞∫

0

(k(·, y, y′) ∗ f (·, y′))(·)dy′
∥∥∥∥∥∥

p

p

dy

≤
∞∫

0

 ∞∫
0

‖k(·, y, y′)‖1‖f (·, y′)‖p dy′
p

dy

≤ ‖f ‖p

Lp(Rn+1+ )

∞∫
0

 ∞∫
0

‖k(·, y, y′)‖p′
1


p

p′

dy.

The assertions b), c) are proved in a simliar way. ¨

Combining the estimates obtained in Proposition 3.1 and Remark 3.2 with Lemma 3.3 we
obtain the following estimates forv2 andw2.

PROPOSITION 3.4.Let 1 < p ≤ ∞ andθ ∈ (0, π). Let v2 andw2 be defined as in
(2.11). Then there exists a constantM > 0 such that

‖v2‖Lp(Rn+1+ )n
≤ M

|λ| ‖fv‖Lp(Rn+1+ )n

‖w2‖Lp(Rn+1+ )
≤ M

|λ| ‖fv‖Lp(Rn+1+ )n

for all λ ∈ 6θ .

Proof. Observe that forλ ∈ 6θ

v2(x, y) =
∞∫

0

∫
Rn

rv(x − x′, y, y′, λ)fv(x
′, y′)dx′dy′, x ∈ R

n, y > 0,

where

rv(x, y, y′, λ) = |λ| n−1
2 rv

(
|λ| 1

2 x, |λ| 1
2 y, |λ| 1

2 y′, λ

|λ|
)

, x ∈ R
n, y, y′ > 0

andrv is satisfying the estimate given in Proposition 3.1. In order to prove the assertion,
we verify the conditions of Lemma 3.3 a) and c).
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To this end, note that∫
Rn

|(∂x)
αrv(x, y, y′, λ)|dx = |λ| n−1

2

∫
Rn

∣∣∣∣(∂x)
αrv

(
|λ| 1

2 x, |λ| 1
2 y, |λ| 1

2 y′, λ

|λ|
)∣∣∣∣ dx

≤ Cn|λ| n−1
2 |λ| 1

2 ye−c|λ| 1
2 y′

∞∫
0

∞∫
0

sn+|α|ρn−1

1 + |λ| 1
2 y + s

e−cs|λ| 1
2 (ρ+y+y′)dρds

≤ Cn|λ| n
2 ye−c|λ| 1

2 y′
∞∫

0

s|α|

1 + |λ| 1
2 y + s

1

|λ| n
2
e−cs|λ| 1

2 (y+y′)ds (3.8)

≤ Cnye−c|λ| 1
2 y′

∞∫
0

e−cs|λ| 1
2 (y+y′)

1 + |λ| 1
2 y

s|α|ds

≤ Cne
−c|λ| 1

2 y′ y

1 + |λ| 1
2 y

· 1

(|λ| 1
2 (y + y′))1+|α|

.

Hence, if 1< p < ∞ and|α| = 0, then
∞∫

0

‖rv(·, y, y′, λ)‖p′
1 dy′ ≤ Cn,p

1

|λ| 1
2

· 1

|λ| p′
2

1

(1 + |λ| 1
2 y)p

′

and

∞∫
0

 ∞∫
0

‖rv(·, y, y′, λ)‖p′
1 dy′


p

p′

dy

≤ Cnp

1

|λ|
p

2p′
· 1

|λ| p
2

1

|λ| 1
2

∞∫
0

1

(1 + σ)p
dσ = Cnp

(
1

|λ|
)p

.

If p = ∞, then
∞∫

0

∫
Rn

|rv(·, y, y′, λ)|dxdy′

(3.9)

≤ Cn

∞∫
0

e−c|λ| 1
2 y′

dy′ · y

1 + |λ| 1
2 y

· 1

|λ| 1
2 y

≤ Cn

1

|λ|
1

1 + |λ| 1
2 y

and hence

sup
y>0

∞∫
0

‖rv(·, y, y′, λ)‖1dy′ ≤ Cn

|λ|

The estimate forrw follows in exactly the same way. ¨
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Note that the kernel estimate given in Proposition 3.1 does not allow to verify the assump-
tions of Lemma 3.3 b) for the casep = 1. We investigate this point in detail in Section 5.
Summing up we proved the following result:

THEOREM 3.5. Let1 < p ≤ ∞, 0 < θ < π andλ ∈ 6θ . Letf ∈ Lp(Rn+1+ )n+1 such
that divf = 0 andfn+1|∂H

= 0. Letu = (v, w)T be defined as in(2.11). Then there exists
a constantM > 0 such that

‖u‖
Lp(Rn+1+ )n+1 ≤ M

|λ| ‖f ‖
Lp(Rn+1+ )n+1.

For 1< p < ∞ andλ > 0 consider the mapping

R(λ) : Lp
σ (H) → Lp

σ (H), f 7→ uλ,

whereuλ is defined as in (2.11). LetA be the Stokes operator inLp
σ (H) defined as in

Section 1. ThenR(λ)(λ − A)f = f for all f ∈ D(A) and(λ − A)R(λ)f = f for all
f ∈ L

p
σ (H). Thus

R(λ) = (λ − A)−1, λ > 0.

Theorem 3.5 implies now the following well known result (see e.g. [Sol77], [McC81],
[Gig81], [FS96], [BS87], [Uka87], [GS89]).

COROLLARY 3.6. Let1 < p < ∞. Then the Stokes operatorA defined as in Section1
generates an analytic strongly continuous semigroup onL

p
σ (H)n+1.

4. The Stokes operator inBUCσ (H), C0,σ (H), L∞
σ (H)

In this section we define the Stokes operator inBUCσ (H), C0,σ (H), L∞
σ (H) and show

that it is the generator of an analytic semigroup on these spaces (which is not strongly
continuous in the case ofL∞

σ (H)). To this end, define

BUCσ (H) := {f ∈ BUC(H); divf = 0, f (x1, . . . , xn, 0) = 0

for all x1, . . . , xn ∈ R}
and

C0,σ (H) := {f ∈ C∞
c (H); divf = 0}−‖·‖L∞ .

Let Xσ (H) be one of the spacesBUCσ (H) or C0,σ (H). For θ ∈ (0, π) andλ ∈ 6θ

consider the mapping

R(λ) : Xσ (H)n+1 → L∞(H)n+1, f 7→ uλ,

whereuλ is the solution of the Stokes equation given in (2.11). Theorem 3.5 and a direct
calculation show that{R(λ); λ > 0} is a pseudo-resolvent inXσ (H)n+1.
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LEMMA 4.1. Letf ∈ Xσ (H)n+1. Then

lim
λ→∞ λR(λ)f = f.

Proof. Notice first that

R(λ)fv = (λ − 1D)−1fv + v2(λ)

R(λ)fw = (λ − 1D)−1fw + w2(λ),

where1D denotes the Dirichlet Laplacian andv2, w2 are defined as in (2.11). Since1D

generates aC0-semigroup onBUC(H) or C0(H), respectively, it follows that

lim
λ→∞ λ(λ − 1D)−1f = f

for all f ∈ Xσ (H). It thus remains to prove that limλ→∞ λv2(λ) = 0 in Xσ (H)n and
limλ→∞ λw2(λ) = 0 in Xσ (H).

In order to do so, note first that limλ→∞ λv2(λ) = 0 in BUCσ (H)n if and only if

lim
λ→0

sup
y>0

∣∣∣∣∫ ∞

0

∫
Rn

λ(n+1)/2rv(λ
1/2x′, λ1/2y, λ1/2y′, 1)

(4.1)

fv(x − x′, y′)dx′dy′
∣∣∣∣ = 0.

Since∫
Rn

λ(n+1)/2rv(λ
1/2x′, λ1/2y, λ1/2y′, 1) dx′ = λr̂v(0, y, y′, λ) = 0

it follows that (4.1) is satisfied provided

lim
λ→0

sup
y>0

∫ ∞

0

∫
Rn

|λ(n+1)/2rv(λ
1/2x′, λ1/2y, λ1/2y′, 1)|

|fv(x − x′, y′) − fv(x, 0)|dx′dy′ = 0.

But∫ ∞

0

∫
Rn

|λ(n+1)/2rv(λ
1/2x′, y, λ1/2y′, 1)||fv(x − x′, y′) − fv(x, 0)|dx′dy′

=
∫ ∞

0

∫
Rn

|rv(x′, y, y′, 1)|
∣∣∣∣fv

(
x − x′

λ1/2
,

y′

λ1/2

)
− fv(x, 0)

∣∣∣∣ dx′dy′

≤
∫ ∞

0

∫
Rn

|rv(x′, y, y′, 1)|dx′dy′ · sup
|x′|≤R,|y′|≤S∣∣∣∣fv

(
x − x′

λ1/2
,

y′

λ1/2

)
− fv(x, 0)

∣∣∣∣
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+
[∫ ∞

S

∫
Rn

|rv(x′, y, y′, 1)|dx′dy′

+
∫ ∞

0

∫
|x′|≥R

|rv(x′, y, y′, 1)|dx′dy′
]

· 2|fv|∞

≤ M sup
|x′|≤ R

λ1/2 ,|y′|≤ S

λ1/2

|fv(x − x′, y′) − fv(x, 0)| + 2|fv|∞M

(
1

S
+ 1

R

)

for all S, R > 0 by (3.9) and since∫ ∞

S

∫
Rn

|rv(x′, y, y′, 1)|dx′dy′ ≤ M

∫ ∞

S

e−cy′

y′ dy′ ≤ M

S

by (3.8) and∫ ∞

0
|rv(x′, y, y′, 1)|dy′ ≤ M

∫ ∞

0
e−cs(|x′|+y) sn

1 + y + s

y

c + s
ds

≤ M

∫ ∞

0
e−cs|x′|snds

by the estimate given in Proposition 3.1 which implies that∫ ∞

0

∫
|x′|≥R

|rv(x′, y, y′, 1)|dx′dy′ ≤ M

R
.

This implies the assertion ifXσ (H) = BUCσ (H). The case where ofXσ (H) = C0,σ (H)

is proved in a similar way. ¨

The above lemma shows that kerR(λ) = 0 for all λ > 0. Hence, there exists a closed,
densely defined operatorAXσ in Xσ (H)n+1 such that

R(λ) = (λ − AXσ )−1, λ > 0.

DEFINITION 4.2. The operatorAXσ is called theStokes operator inXσ (H)n+1.

Theorem 3.5 implies now the following result.

THEOREM 4.3. The Stokes operatorAXσ generates a strongly continuous analytic
semigroup onXσ (H)n+1.

Finally, we consider the solution of the Stokes equation inL∞
σ (H). This space is defined as

follows: Observe that∇ acts as a bounded operator from̂W1,1(H) into L1(H)n+1, where
Ŵ1,1(H) = {f ∈ L1

loc(H); ∇f ∈ L1(H)}. HenceDiv := −∇∗ is a bounded operator
from L∞(H)n+1 into Ŵ1,1(H)∗. We define

L∞
σ (H)n+1 := kerDiv.



Vol. 1, 2001 Lp-Theory of the Stokes equation in a half space 129

Thusf ∈ L∞
σ (H) if and only if

∫
H

∇ϕf = 0 for all ϕ ∈ W1,1(H). Consider the mapping
R(λ) : L∞

σ (H)n+1 → L∞(H)n+1 defined as before. Theorem 3.5 and a direct calculation
implies that{R(λ); λ > 0} is a pseudo-resolvent. In contrast to the situation ofXσ (H)

we donot have that limλ→∞ λv2(λ) = 0 in L∞
σ (H). However, the representation of the

remainder term given in Section 3 allows us to show that kerR(λ) = 0 in L∞
σ (H) for all

λ > 0. Thus there exists a closed operatorAL∞
σ

in L∞
σ (H)n+1 such that

R(λ) = (λ − AL∞
σ

)−1, λ > 0.

We call the operatorAL∞
σ

theStokes operator inL∞
σ (H)n+1. Note thatAL∞

σ
is not densely

defined; however Theorem 3.5 implies the following result.

THEOREM 4.4. The Stokes operatorAL∞
σ

generates an analytic semigroup on
L∞

σ (H)n+1 (which is not strongly continuous in0).

5. The casep = 1

In this section we give an example of a functionf ∈ L1(Rn+1+ )n+1 satisfying divf = 0
such thatw2 6∈ L1(Rn+1+ ) wherew2 is defined as in Section 2. This is rather surprising
sinceu ∈ Lp(Rn+1+ )n+1 wheneverf ∈ Lp(Rn+1+ )n+1 with div f = 0 for all p ∈ (1, ∞]
as we have seen in Section 2. More precisely, we have the following result.

THEOREM 5.1. Let 0 < θ < π andλ ∈ 6θ . Then there existsf = (f1, . . . , fn+1) ∈
L1(Rn+1+ )n+1 satisfying divf = 0 and fn+1(x, 0) = 0 for all x ∈ R

n such thatu 6∈
L1(Rn+1+ )n+1, whereû = (v̂, ŵ) defined as in(2.11) is the solution of the resolvent equation
(2.2)–(2.6).

We base the construction of our counterexample on well known properties of the Hardy
spaceH 1(Rn). We remind the reader that

H 1(Rn) := {f ∈ L1(Rn) : f ∗ ∈ L1(Rn)}
wheref ∗ is given by

f ∗(x) := sup
t>0

|(kt ∗ f )(x)|, x ∈ R
n,

and kt denotes the Gaussian kernel given bykt (x) = 1

(4πt)
n
2
e− |x|2

4t (x ∈ R
n, t > 0).

Equipped with the norm‖f ‖H1(Rn) := ‖f ∗‖L1(Rn), the spaceH 1(Rn) becomes a Banach
space. It is well known that anL1-functionf belongs toH 1(Rn) if and only if its Riesz
transformsRjf belong toL1(Rn) for all j ∈ {1, . . . , n}. This property ofH 1(Rn) will be
of crucial importance for the following.
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Proof of Theorem5.1. Consider the Gaussian kernelkr for somer > 0. Thenkr 6∈
H 1(Rn) becausek∗

r 6∈ L1(Rn). Thus, sincekr ∈ L1(Rn), there existsj ∈ {1, . . . , n} such
thatRjkr 6∈ L1(Rn). Fix j ∈ {1, . . . , n} with this property and define forx ∈ R

n, y > 0
andr > 0 the functionfw : R

n+1+ → R by

fw(x, y) := 4yTω1(y)
∂

∂xj

(1 − 1)3/2kr(x), x ∈ R
n, y > 0.

HereTw1 denotes theC0-semigroup onLp(Rn), 1 ≤ p < ∞ generated by the pseudo-
differential operatorA given byAf = −F−1(ω1f̂ ), whereω1(ξ) = √

1 + |ξ |2 for ξ ∈ R
n.

Note that‖Tω1(y)‖ ≤ Me−y for suitableM > 0 and ally ≥ 0. Hence

∞∫
0

‖fw(·, y)‖p

Lp(Rn) dy ≤ C

∞∫
0

ype−yp dy < ∞,

for suitableC > 0, which means thatfw ∈ Lp(Rn+1+ ) for all p ∈ [1, ∞). Observe moreover
that

f̂w(ξ, y) = 4ye−ω1(ξ)y(iξj )ω
3
1(ξ)e−r|ξ |2, ξ ∈ R

n, y > 0

and

∂yf̂w(ξ, y) = (iξj )4ω3
1(ξ)e−r|ξ |2(e−ω1(ξ)y − ω1(ξ)ye−ω1(ξ)y) =: iξj ĝr (ξ, y)

with gr ∈ Lp(Rn+1+ ) for 1 ≤ p < ∞. Set nowf := (fv, fw)T with fv := (0, . . . ,−gr,

0, . . . , 0) so that thej -th component offv is −gr . Thus divf = 0, f ∈ Lp(Rn+1+ )n+1

and(f · ν)|∂H
= 0, whereν denotes the outer unit normal. Observe next that the functions

ξ 7→ f̂ L
w (ξ) = 4

∞∫
0

se−2ω1(ξ)s(iξj )ω
3
1(ξ)e−r|ξ |2ds = (iξj )e

−r|ξ |2ω1(ξ)

ξ 7→ ŵ2(ξ, s) = −(iξj )ω1(ξ)e−r|ξ |2(ω1(ξ) + |ξ |)[e−s|ξ | − e−ω1(ξ)s ], s > 0

ξ 7→
∞∫

0

ŵ2(ξ, s)ds = − 1

|ξ |ω1(ξ)
(iξj )ω1(ξ)e−r|ξ |2 = −1

2

iξj

|ξ | e
−r|ξ |2

all belong toL2(Rn). It thus follows from Plancherel’s theorem that

∞∫
0

w2(x, y)dy = −F−1(rj (·)e−r|·|2)(x),



Vol. 1, 2001 Lp-Theory of the Stokes equation in a half space 131

whererj (ξ) = i
ξj

|ξ | for ξ 6= 0. Hence

‖w2‖L1(Rn+1+ )
=
∫
Rn

∞∫
0

|w2(x, y)| dydx

≥
∫
Rn

∣∣∣∣∣∣
∞∫

0

w2(x, y)dy

∣∣∣∣∣∣ dx

=
∫
Rn

|F−1(rj (·)e−r|·|2)(x)| dx

= ‖Rjkr‖L1(Rn) = ∞,

by the choice ofj at the beginning of this section. This implies the assertion.

REMARK 5.2. It is an open problem to decide whether the assertion of Theorem 5.1
remains true if the half spaceH is replaced by aboundeddomain with smooth boundary.

We now turn our attention to gradient estimates in theL1-norm of the solution of the Stokes
equation as they were proved in [GMS99] in 1999. To this end let|λ| = 1 and note that by
(3.8) we have for|α| = 1

sup
y′>0

∫ ∞

0

∫
Rn

|(∂x)
αrv(x, y, y′, λ)|dxdy

≤ C

∫ ∞

0

∫ ∞

0

sy

1 + y + s
e−csydsdy

= 2C

∫ ∞

0

∫ y

0

sy

1 + y + s
e−csydsdy < ∞.

Moreover, note that

∂y r̂v(ξ, y, y′, λ) = −e−ω(ξ)y′
e−|ξ |y ξξT

ω(ξ)

1 − e−(ω(ξ)−|ξ |)y

ω(ξ) − |ξ | + e−ω(ξ)(y+y′) ξξT

ω(ξ)|ξ | .

The first term on the right hand side above is estimated exactly in the same way as∂xrv. In
order to treat the second term denote its inverse Fourier transform byrv1. For |λ| = 1, we
obtain

|rv1(x, y, y′, λ)| ≤ M

∫ ∞

0
rn−2

∫ ∞

0
e−c|x|(r+s)e−c(y+y′)(1+r+s) r + s

1 + r + s
dsdr
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Thus

sup
y′>0

∫ ∞

0

∫
Rn

|rv1(x, y, y′, λ)|dxdy ≤ M

∫ ∞

0

∫ ∞

0

1

1 + s
e−cy(1+s)dsdy < ∞.

Lemma 3.3 b), a scaling argument and a simliar argument forrw implies now the following
result which was proved first in [GMS99].

PROPOSITION 5.3.There exists a constantM > 0 such that the solution of the Stokes
equation(1.1) with right hand sidef = 0 satisfies

‖∇u(t, ·)‖1 ≤ M

t1/2
‖u0‖1, t > 0.

6. BoundedH∞-calculus

Givenθ ∈ (0, π), we denote byH∞(6θ ) the Banach algebra of all bounded holomorphic
functionsf : 6θ → C equipped with the supremum norm. We also denote byH∞

0 (6θ )

the set of allg ∈ H∞(6θ ) such that there exist constantsC ≥ 0, s > 0 with

|g(z)| ≤ C
|z|s

1 + |z|2s
, z ∈ 6θ .

Let now ω ∈ (0, π) and letA be a closed, densely defined operator in a Banach space
X which is one to one and has dense range. Assume thatσ(A) ⊂ 6ω and that for every
ω′ ∈ (ω, π) there existsM > 0 such that

‖(λ − A)−1‖ ≤ M

|λ| , λ ∈ C\6ω′ .

Let ω < θ < π . Then, giveng ∈ H∞
0 (6θ ), the operator

g(A) := 1

2πi

∫
0

g(λ)(λ − A)−1dλ

is a well defined element ofL(X), where0 denotes the positively oriented contour{λ =
te±iω′ ; t ≥ 0} for someω′ ∈ (ω, θ). Moreover, forz ∈ 6ϑ seth(z) := z(1 + z)−2. Then

f (A) := [h(A)]−1(f h)(A), f ∈ H∞(6ϑ)

is a well defined operator inX. Let 0 < ω < θ < π . We say thatA admits a bounded
H∞-calculus on the sector6θ if f (A) ∈ L(X) and there exists a constantM > 0 such that

‖f (A)‖L(X) ≤ M‖f ‖∞, f ∈ H∞(6ϑ). (6.1)
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It is well known, thatA satisfies (6.1) if there existsM > 0 such that

‖g(A)‖L(X) ≤ M‖g‖∞, g ∈ H∞
0 (6ϑ).

For details see [CDMY96]. Thus in deriving estimates forf (A), it suffices to establish
estimates forg(A), whereg ∈ H∞

0 (6ϑ).
For 1 < p < ∞ let A be the Stokes operator inLp(H)n+1 defined as in Section 1.

We show in the following that−A admits a boundedH∞-calculus onLp(H)n+1 for every
sector6θ with 0 < θ < π . We start with the following lemma.

LEMMA 6.1. LetT be an integral operator of the form

(Tf )(y) =
∞∫

0

k(y, y′)f (y′)dy′, y > 0, (6.2)

wherek : R+ × R+ → C is a measurable function such that the above integral is well
defined. Suppose that for somep ∈ (1, ∞) there exists a constantM > 0 such that

|(Tf )(y)| ≤ M

y
1
p

‖f ‖Lp(R+), y > 0.

If T ∈ L(Lq0(R+)) for someq0 ∈ (p, ∞], thenT ∈ L(Lq(R+)) for all q ∈ (p, q0].

Proof. By assumption,Tf is dominated pointwise by a function belonging to the weak
Lp-spaceLp

w(R+). ThusT : Lp(R+) → L
p
w(R+) is a bounded operator. The assumption

and the Marcinkiewicz interpolation theorem imply thatT ∈ L(Lq(R+)) for all q ∈
(p, q0]. ¨

COROLLARY 6.2. Let k : R+ × R+ → C be a measurable function. Suppose that
there existsM > 0 such that

|k(y, y′)| ≤ M

y + y′ log

(
1 + y

y′

)
, y, y′ > 0.

LetT be defined as in(6.2) and let1 < p ≤ ∞. ThenT ∈ L(Lp(R+)).

Proof. Note first that

∞∫
0

|k(y, y′)|dy′ ≤ M

∞∫
0

log(1 + y
y′ )

1 + y
y′

dy′

y′ = M

∞∫
0

log(1 + s)

(1 + s)s
ds < ∞

which implies thatT ∈ L(L∞(R+)).
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If p > 1 let 1
p

+ 1
p′ = 1. Forf ∈ Lp(R+) we obtain by Ḧolder’s inequality

|Tf (y)| ≤ M

 ∞∫
0

logp′
(1 + y

y′ )dy′

(y + y′)p′


1
p′

‖f ‖Lp(R+)

= M

y
1
p

∞∫
0

logp′
(1 + s)

(1 + s)p
′

1

s2−p′ ds‖f ‖Lp(R+)

≤ M

y
1
p

‖f ‖Lp(R+), y > 0.

Thus the assertion follows from Lemma 6.1. ¨

Let nowh ∈ H∞
0 (6θ ) where 0< θ < π is fixed. Consider the function

kh,v(x, y, y′) = 1

2πi

∫
0

h(λ)rv(x, y, y′, −λ)dλ, x ∈ R
n, y, y′ > 0,

whererv is defined as in (3.2) and0 := {ρe±iϕ, ρ ≥ 0} with 0 < ϕ < θ . The estimate for
rv given in Proposition 3.1 yields

|kh,v(x, y, y′)| ≤ C‖h‖H∞

∞∫
0

|rv(x, y, y′, ρe±i(π−ϕ))|dρ

≤ C‖h‖H∞

∞∫
0

ρ
n
2 ye−cρ

1
2 y′

∞∫
0

sne−cρ
1
2 s(|x|+y+y′)

1 + ρ
1
2 y + s

dsdρ

(6.3)

≤ C‖h‖H∞

∞∫
0

ye−cρ
1
2 y′

∞∫
0

σn e−cσ (|x|+y+y′)

ρ
1
2 + ρy + σ

dσdρ

=: C‖h‖H∞k1(x, y, y′).

Now∫
Rn

|k1(x, y, y′)|dx ≤ Cn

∞∫
0

ye−cρ
1
2 y′

∞∫
0

e−cσ (y+y′)

ρ
1
2 + ρy + σ

dσdρ

≤ C
y

y + y′

∞∫
0

e−cρ
1
2 y′

ρ
1
2 + ρy

dρ

= C
y

y + y′

∞∫
0

e−csy′

1 + sy
ds, y, y′ > 0.
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Splitting the latter integral ats = 1
y′ , we obtain

∞∫
0

ye−csy′

1 + sy
ds ≤

1
y′∫

0

y

1 + sy
ds + y

1 + y
y′

∞∫
1
y′

e−csy′
ds

≤ log

(
1 + y

y′

)
+ C

y
y′

1 + y
y′

≤ C log

(
1 + y

y′

)
.

This implies that∫
Rn

|k1(x, y, y′)|dx ≤ C

y + y′ log

(
1 + y

y′

)
, y, y′ > 0. (6.4)

Define now the operatorTh,v in Lp(Rn+1+ ) by

(Th,vf )(x, y) :=
∞∫

0

∫
Rn

kh,v(x − x′, y, y′)f (x′, y′)dx′dy′, x ∈ R
n, y > 0. (6.5)

Then, by Young’s inequality, (6.3), (6.4) and Corollary 6.2 we have

∞∫
0

∫
Rn

|(Th,vf )(x, y)|pdxdy ≤
∞∫

0

 ∞∫
0

‖kh,v(·, y, y′)‖1‖f (·, y′)‖p dy′
p

dy

≤ C‖h‖p
H∞

∞∫
0

 ∞∫
0

1

y + y′ log

(
1 + y

y′

)
‖f (·, y′)‖p dy′

p

dy (6.6)

≤ C‖h‖p
H∞‖f ‖p

Lp(Rn+1+ )
.

Moreover, by Remark 3.2 the functionrw defined as in (3.7) satisfies also an estimate of
the form given in Proposition 3.1. Thus, the functionkh,w defined by

kh,w(x, y, y′) := 1

2πi

∫
0

h(λ)rw(x, y, y′, −λ)dλ, x ∈ R
n, y, y′ > 0

also satisfies

|kh,w(x, y, y′)| ≤ C‖h‖H∞k1(x, y, y′), x ∈ R
n, y, y′ > 0.

Define the operatorTh,w as in (6.5) withkh,v replaced bykh,w. We conclude thatTh,w

satisfies estimate (6.6).
Finally note that the operator−1D admits a boundedH∞(6θ )-calculus onLp(Rn+1+ )

for everyθ ∈ (0, π). This follows from Corollary 7.3 below or by the results proved in
[PS93]. This fact and (6.6) imply the following result.
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THEOREM 6.3. Let 1 < p < ∞ and letA be the Stokes operator in defined as in
Lp(Rn+1+ )n+1. Then−A admits a boundedH∞(6θ )-calculus onLp(Rn+1+ )n+1 for each
θ ∈ (0, π).

As a consequence we obtain by the Dore-Venni theorem maximalLp–Lq -estimates for
the solution of the Stokes equation (see also [GS91], [Gig85]).

7. R-boundedH∞-calculus for −1 on R
n+1 and R

n+1+

R-bounded families of operators play an important role in the variant of the Dore-
Venni theorem which has been recently proved by Kalton and Weis [KW00]. They are
defined as follows: letX andY be Banach spaces. We call a family of operatorsT ⊂
L(X, Y ) R-bounded, if there is a constantC > 0 andp ∈ [1, ∞) such that for each
N ∈ N, Tj ∈ T , xj ∈ X and all independent, symmetric{−1, 1}-valued random variables
εj on a probability space(�, M, µ) we have∥∥∥∥∥∥

N∑
j=1

εjTjxj

∥∥∥∥∥∥
Lp(�;Y )

≤ C ·
∥∥∥∥∥∥

N∑
j=1

εj xj

∥∥∥∥∥∥
Lp(�;X)

.

The smallest suchC is called theR-boundof T and is denoted byR(T ). For detailed
information on this subject and its relation to maximalLp-regularity and toLp-Fourier
multipliers, we refer to [CdPSW00], [Wei99] and [CP00].

REMARK 7.1. a) LetX andY be Hilbert spaces. ThenT ⊂ L(X; Y ) isR-bounded
if and only if T is uniformly bounded.

b) Let 1 ≤ p < ∞ and letX = Y = Lp(G) for someG ⊂ R
n open. Then

T ⊂ L(X, Y ) is R-bounded if and only if there is a constantM > 0 such that the
following square function estimate∥∥∥∥∥∥∥
 N∑

j=1

|Tjfj |2


1
2

∥∥∥∥∥∥∥
Lp(G)

≤ M

∥∥∥∥∥∥∥
 N∑

j=1

|fj |2


1
2

∥∥∥∥∥∥∥
Lp(G)

(7.1)

holds for eachN ∈ N, f ∈ Lp(G) andTj ∈ T .
This assertion is a coinsequence ofKhintchine’s inequality. Forp ∈ [1, ∞) there

exists a constantKp > 0 such that

K−1
p

∥∥∥∥∥∥
N∑

j=1

εj aj

∥∥∥∥∥∥
Lp(�)

≤
 N∑

j=1

|aj |2


1
2

≤ Kp

∥∥∥∥∥∥
N∑

j=1

εj aj

∥∥∥∥∥∥
Lp(�)
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for all N ∈ N, aj ∈ C and all independent, symmetric{−1, 1}-valued random
variablesεj on (�, M, µ).

Let � ⊂ R
n open and let 1< p < ∞. Assume that a given operatorA in Lp(�)

admits a boundedH∞-calculus onLp(�) for some sector6θ with 0 < θ < π . By
the recent results given in [KW00] it is an interesting question to ask whether or not
the set

{h(A) : h ∈ H∞
0 (6θ ), ‖h‖H∞(6θ ) ≤ R} ⊂ L(Lp(�)) (7.2)

is R-bounded. If this holds true, we say thatA admits anR-boundedH∞-calculus
onLp(�) for the sector6θ .

Our first result in this section asserts that−1 on Lp(Rn), where1 denotes the
Laplacian, admits anR-boundedH∞-calculus onLp(Rn) for each sector6θ where
0 < θ < π . More precisely, the following holds true.

THEOREM 7.2. Let 1 < p < ∞ and denote by1 the Laplacian inR
n. Then−1

admits anR-boundedH∞-calculus onLp(Rn) on the sector6θ for 0 < θ < π .

Proof. Let h ∈ H∞
0 (6θ ), where 0< θ < π . Then the Fourier transform ofh(−1) is

given byh(|ξ |2) for ξ ∈ R
n. The kernelkh(·) corresponding toh(| · |2) is given by

kh(x) = 1

(2π)n

∫
Rn

eixξh(|ξ |2)dξ, x ∈ R
n.

Choosing a rotationQ such thatQx = (|x|, 0, . . . , 0) and writingQξ = (a, rb), with
a ∈ R, r > 0, b ∈ R

n−1, |b| = 1 we obtain

kh(x) = cn

∞∫
0

rn−2

∞∫
−∞

h(r2 + a2)ei|x|adadr, x ∈ R
n.

Next we deform the contour of integration via Cauchy’s theorem to

a = s + iε(r + |s|), r > 0, s ∈ R.

We then obtain∣∣∣∣ Im(r2 + a2)

Re(r2 + a2)

∣∣∣∣ = 2ε|s|(r + |s|)
r2 + s2 − ε2(r + |s|)2

≤ 4ε(r2 + s2)

(1 − 2ε2)(r2 + s2)
≤ Cε,
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which implies that forε small enough our new contour stays inside6θ . Thus

|kh(x)| ≤ C

∞∫
0

rn−2

∞∫
0

‖h‖H∞e−c|x|(r+s)dsdr

≤ C‖h‖H∞

∞∫
0

|x|1−ne−c|x|sds = C
‖h‖H∞

|x|n , x ∈ R
n\{0}.

Similarly,

|Dαkh(x)| ≤ Cα‖h‖H∞
1

|x|n+|α| , x ∈ R
n\{0}

for each multiindexα. If |x| ≥ 2|y| we obtain

|kh(x − y) − kh(x)| =
∣∣∣∣∣∣

1∫
0

d

dt
kh(x − ty)dt

∣∣∣∣∣∣
≤ |y|

1∫
0

dt

|x − ty|n+1
‖h‖H∞ ≤ C

|y|
|x|n+1

‖h‖H∞ .

This implies that forR > 0 the uniform Ḧormander condition is satisfied, i.e.:∫
|x|>2|y|

sup
‖h‖H∞≤R

|kh(x − y) − kh(x)|dx

(7.3)

≤ C|y|R
∫

|x|>2|y|

dx

|x|n+1
= C|y|R

∞∫
2|y|

dr

r2
= CR.

SinceA = −1 is selfadjoint inL2(Rn) we see that the set

{h(A) : h ∈ H∞
0 (6θ ), ‖h‖H∞(6θ ) ≤ R} ⊂ L(L2(Rn))

is uniformly bounded. By Remark 7.1 a) and 7.1 b) it follows that there is a constantC > 0
such that∥∥∥∥∥∥∥

 N∑
j=1

|Hjfj |2


1
2

∥∥∥∥∥∥∥
L2(Rn)

≤ CR

∥∥∥∥∥∥∥
 N∑

j=1

|fj |2


1
2

∥∥∥∥∥∥∥
L2(Rn)
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for N ∈ N, Hj := hj (A), hj ∈ H∞
0 (6θ ), ‖hj‖H∞(6θ ) ≤ R. Set nowX := lN2 (N) and

defineK : Lp(Rn, X) → Lp(Rn, X) by

(Kf )i := Hifi, i = 1, . . . , N.

The uniform Ḧormander condition (7.3) implies that∫
|x|>2|y|

‖K(x − y) − K(x)‖ dx ≤ CR.

SinceK acts as a bounded operator onL2(Rn; X), the Benedek-Calderon-Panzone theorem
(see e.g. [Hie99]) implies thatK is Lp-bounded for 1< p < ∞. This means that there is
a constantC > 0 such that∥∥∥∥∥∥∥

 N∑
j=1

|Hjfj |2


1
2

∥∥∥∥∥∥∥
Lp(Rn)

≤ C

∥∥∥∥∥∥∥
 N∑

j=1

|fj |2


1
2

∥∥∥∥∥∥∥
Lp(Rn)

.

Remark 7.1 b) implies that the set

{h(A) : h ∈ H∞
0 (6θ ), ‖h‖H∞(6θ ) ≤ R} ⊂ L(Lp(Rn))

is R-bounded for allR > 0 and all 0< θ < π . ¨

COROLLARY 7.3. Let 1 < p < ∞. Denote by1D the Dirichlet Laplacian inRn+1+ .
Then−1D admits anR-boundedH∞(6θ )-calculus onLp(Rn+1+ ) for eachθ ∈ (0, π).

Proof. The resolvent of the Dirichlet Laplacian1D in R
n+1+ may be written as

(λ + 1D)−1 = P0(λ + 1)−1E0 − P0R(λ + 1)−1E0, λ ∈ C\6θ,

where1 denotes the Laplacian inRn+1, E0 denotes extension by 0 toRn+1, P0 the pro-
jection fromR

n+1 to R
n+1+ andR the reflection in the normal coordinatey. Therefore we

have forh ∈ H∞(6θ )

h(−1D) = P0h(−1)E0 − P0Rh(−1)E0.

The assertion thus follows from Theorem 7.2. ¨
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We finally turn our attention to the remainder term of the Stokes operator as defined in
Section 5. We start with the following proposition.

PROPOSITION 7.4.Let 1 ≤ p < ∞, G ⊂ R
n be open and letT = {Tµ : µ ∈ M} ⊂

L(Lp(�)) be a family of integral operators of the form

(Tµf )(x) =
∫
G

kµ(x, y)f (y)dy, x ∈ G, f ∈ Lp(G),

such that there exists a functionk0 with

|kµ(x, y)| ≤ k0(x, y), f.a.a.x, y ∈ G ∈ M.

For x ∈ G set(T0f )(x) = ∫
G

k0(x, y)f (y)dy. If T0 ∈ L(Lp(G)), thenT ⊂ L(Lp(G)) is
R-bounded.

Proof. Due to Remark 7.1 b) it suffices to verify the square function estimate (7.1). But
this follows easily from theLp-boundedness of the dominating operatorT0. ¨

Combining (6.5), (6.6) and Corollary 6.2 with Proposition 7.4 we obtain the following
result.

COROLLARY 7.5. Let 1 < p < ∞, 0 < θ < π . Let kh,v andkh,w be defined as in
Section5. For h ∈ H∞

0 (6θ ) define operatorsTh,v andTh,w as in(6.5). LetR > 0. Then
the sets

{Th,v : h ∈ H∞
0 (6θ ), ‖h‖H∞(6θ ) ≤ R} ⊂ L(Lp(Rn+1+ ))

{Th,w : h ∈ H∞
0 (6θ ), ‖h‖H∞(6θ ) ≤ R} ⊂ L(Lp(Rn+1+ ))

areR-bounded.

Summarizing, we proved the following result.

THEOREM 7.6. Let1 < p < ∞. Denote byA the Stokes operator inLp
σ (Rn+1+ ). Then

−A admits anR-boundedH∞(6θ )-calculus onLp
σ (Rn+1+ ) for eachθ ∈ (0, π).
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