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L?-Theory of the Stokes equation in a half space

WOLFGANG DESCH, MATTHIAS HIEBER AND JAN PRUSS

Abstract. In this paper, we investigate? -estimates for the solution of the Stokes equation in a half space
where 1< p < oo. It is shown that the solution of the Stokes equation is governed by an analytic semigroup
on BUC,(H), Co - (H) or L3°(H). From the operatortheoretical point of view it is a surprising fact that the
corresponding resultfdr&(H) does not hold true. In fact, there existsiahfunction f satisfyingdivf = 0 such

that the solution of the corresponding resolvent equation with right hang'sides not belong ta. Taking into
account however a recent result of Kozono on the nonlinear Navier-Stokes equatibﬁ-,rﬂfmjlt is not surprising

and even natural. We also show that the Stokes operator adRiandedH *°-calculus on.” for1 < p < oo

and obtain as a consequence maxim@+L4 -regularity for the solution of the Stokes equation.

1. Introduction

In this paper, we consider the Stokes equation in a half sphce- R’fl, i.e. we
consider the set of equations

ur—Au+vp = f inH x (0,00)
diviu = 0 inH x (0, 00)

u =0 ondH x (0,00) (1.1)
u(0) = ug
whereu = (uy, ..., u,, u,41)" isinterpreted as the velocity field apds the pressure. We

are interested in th&?-theory of the solution of (1.1) whered p < oco. If 1 < p < o0,
one usually defines the subspdd& H) of L?(H) consisting of all solenoidal functiong
in L? and associates to (1.1) the so-called Stokes opesaio L5 (H))"+! defined as

Au = PAu
D(A) = (W2P(H) N W}P(H) N LE(H))"+.

Here P denotes the Helmholtz projection ¥ (H). Then it is well known that the Stokes
operatorA generates an analytic semigroup B(H) for 1 < p < oo (see for instance
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[Sol77], [McC81], [Uka87]). It seems to be unknown whether system (1.1) is also solvable
in L1(H) or L°°(H). Observe that the Helmholtz projection is not boundedinH) or

L% (H). Thus the usual decompositionbf (H) in LY (H) and its orthogonal complement
which is true for 1< p < oo is no longer possible ibp = 1 or p = oco.

The strategy we use to solve the Stokes system and to get sharp regularity results
on the resolvent is the following: Taking Fourier transforms we obtain a representation
of the solution of the corresponding resolvent equation as a sum of two terms, the first
being the resolvent of the Dirichlet Laplacianbﬂ(RTl), the second one being a remain-
der term. In Section 3 we derive pointwise upper bounds on the remainder term which
allow to proveL*°-estimates for the solution of the corresponding resolvent problem, i.e.
we obtain estimates of the form

oo < 20 floo
A
for the equation defined below in (2.1), wherbelongs to a suitable sector in the complex
plane.

The above estimate allows us to prove that the Stokes operator generates an analytic
semigroup on the spacéd/C, (H), Co ,(H), LY (H), which is, of course, not strongly
continuous in the latter case.

The casep = 1 is of special interest, see [GMS99], [Koz98] and [Miy97]. In Section 5
we give an example of a functiofi € LY(R%™)"+1 satisfying divf = 0 such thau ¢
LY(R" "+ wherei is the solution of the resolvent equation (2.1) defined below. This
implies in particular that there %0 estimate of the form

llu(z, )z = Clluolla (1.2)

for the solution of the Stokes Problem (1.1) with= 0. This is remarkable because the
solution of the Stokes equation on allR? satisfies an estimate of form (1.2). Taking into
account however a recent result of Kozono [Koz98] on the equations of Navier-Stokes for
exterior domains one does not expect an estimate of form (1.2) to hold true. Indeed, he
showed that the existence of a local strong solution of the Navier-Stokes equatibhs in
implies that no force could act on the boundary of the domain which would mean that the
Navier-Stokes equations are physically meaningless. Thus, from this point of view one
does not expect that (1.2) holds true. However, the pointwise upper bound on the remainder
term allows us to prove an estimate of the form

1
Vu(t, )l < leluolll

for the solution of (1.1) withf = 0 which was proved first in [GMS99].
The pointwise upper bound on the remainder term allows us also to show thakfor 1
p < oo the Stokes operator admits a bound&tf-calculus onl.? (H)"*1. In fact, even a
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stronger result is true: In Section 7 we prove that the LaplaciaR"oand the remainder
term even admit aR-boundedH *°-calculus onL? (H)"t1 for 1 < p < oco. Thus the
Stokes operator admits atrboundedH *-calculus onL? (H)"t1. As a consequence, we
obtain maximalL?—L4-regularity for the solution of the Stokes equation (1.1).

For more information on the role of the Stokes semigroup in the theory of the Navier-
Stokes equations, we refer to the recent article of Amann [Ama00Q] and the survey article
by Wiegner [Wie99].

NOTATIONS AND CONVENTIONS. Throughout this paper, we define foe® < 7
the sectorsy in the complex plane by = {z € C\{0}; |arg| < 0}. If X andY are
Banach spaceg;(X, Y) denotes the space of all bounded, linear operators foto Y;
moreoverL(X) := L(X, X). The spectrum of a linear operatdin X is denoted by (A).
Givenp € [1, o0), we denote by

LP(H) = {f € C(H); div f =0}l
the Banach space of all solenoidal functiondi(H). If 1 < p < oo, then
LP(H) = LL(H) ® G”(H),

whereG? (H) consists of all functiong € L?(H) for which there existg € L{(’)C(H) such
that f = Vg. The projectionP : L”(H) onto LY (H) is called the Helmholtz Projection.
By C, M andc we denote various constants which may differ from line to line, but which

are always independent of the free variables.

2. The resolvent problem for the Stokes problem

In this section we consider the resolvent equation for the Stokes problem in the half
spaceH = R"™ = {(x,y) e "% x e R, y > 0}. Givenp € [1, <], » € 3, and
f e LP(RYH L with div f = 0, find a velocity fieldu = (u, ..., uy, u,r1)” and a
pressure fielgh such that

A —Au+vp = f inH,

divu = 0 inH, (2.2)
upy = 0.
Forx € R" andy > 0 we writeu = (v, w)T withv = (v1, ..., v,)T andf = (fy, fu)?

with f, = ((f)1, - .., (fu)n)T. Assume thatf,, (£, 0) = O for all & € R". Applying the
Fourier transform with respect towe obtain

A+ P& y) - 050¢E.y) = flE.y) —iE-pGE.y), E€R".y>0 (22
O+ E2DDE, y) — 2D(E ) = fu y) —0,pE y), E€R,y>0  (23)
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i£E- 0, y)+o,wE,y) =0, £eR'y>0 (2.4)
5(E.0) = 0, £cR" (2.5)
BE 0 = 0, &cR" (2.6)

Multiplying equation (2.2) by£, applyingd, to (2.3) and adding them yields
E12p(E. y) — 02p(E. y) = =0y ful&. y) —i& fu(€.Y)
=—(divf)'(¢,y) =0
for & € R" andy > 0, where we already took into account equation (2.4). Hence
pE ) =e o), §eR", y>0

for some functiorpg. We thus obtain fof andw the following representations

1 o
ﬁ(és )’) = —/[efw(%‘)‘y*ﬂ _ e*a)(é)(y+s)]
2
o @ )

) 2.7)
[fo(&. ) —i&e™ " po()] ds.
l oo
BEy) = _/[e—w@)\y—xl e o® )]
2
w(§) J
(2.8)

[fuw (&, 5) + €le™ " po©)] ds,

foré e R", y > 0 and wherev(¢) := (|A| + |é§|2)% for £ € R". In order to determingg
consider,w(&, y) aty =0, i.e.

dyw(E, 0) = /e*w@”[fw@,s) +|Ele B8 po(6)]ds =0, £ eR™
0
This implies that
Po(€) = ——(‘"@?J 5D [ 0@ f, 6. 5yds. & #0 (2.9)

By assumptioni¢ - £, (¢, y) + 8, fuw(&, y) = O for£ € R" andy > 0. Integrating by parts
yields

i(e—‘““f)f)ﬁu(s, s)ds

—w(é)/e‘w@”fw(s,s)ds =
ds
0

e G ig) . fo (&, 5) ds.

[
[
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Thus

fle) = / e E8 f (&, 5) ds =
0

~ (2.10)
_ 18 —w(®)s f gs —: T8 L
0 (@) J e fo(&.s)ds =: w(s)f” é)
forall ¢ € R". Inserting (2.9) and (2.10) into (2.8) and (2.7) we obtain
U = 01402
(2.11)

W = Wi+ w2

with 01, 02 andwy, w2 given foré € R andy > 0 by

b y) = Tl(g) / [ @7 — 7 @O0 €, 5) ds
0

1 o
i}Z(g’ y) = —/[efw(‘f)b’*ﬂ _e*a)(é)(y{»s)]
2
0@ )
%e—w(w@) + gD ds fL @)
_ B L el ey L
0@ — " eI E)

1 ~A
= —yIEl _ —w@)y1(e . £L
w® — EDEwWE) e ERE - £ )8

Wi, y) = T]é) /[e—w(é)ly—sl _ e—w(f)(y+5)]fw(€’ s)ds
0

1

li}Z(Sv y) = m[e_)"a _e—w(f)}’]ful;(s)
. . -
- wlé> o e e ®.

Observe that

vi=0—Ap) Y fy, wi= (O —Ap)tfu,



120 WOLFGANG DESCH, MATTHIAS HIEBER AND JAN PRUSS J.evol.equ.

whereA p denotes the Laplacian H@ﬁ'jl subject to zero Dirichlet boundary conditions. It
is well known that for 1< p < oo andi € Xy with & < 7 there exists a constaM > 0
such that

”vl”LP(RTrl)" < m”fv”Lp(Rrrrl)n

IA

||wl||Lp(R’J1r+l) m“fw”Lp(R}rrl).

Hence, in order to obtaih?-estimates for andw we may restrict ourselves in the following
to the case®; andwy. The LP-estimates fow, andw> will be derived from pointwise
upper bounds for the inverse Fourier transfornd-oandw,.

3. Pointwise upper bounds for the remainder term

We proved in the previous Section 2 that
v=(G-Ap) it
w = (= Ap) L+ wp
wherev, andw; are defined asin (2.11). Inthis section we derive pointwise upper estimates

for vy andwsy.
Letd < m and defing’, : R" x Ry x Ry x ¥y — C by

elEly _ pmo®y 1

AU A /,)\‘ = T 70)(5)}’/’ 3.1
WEY YD =TS T e ¢ 54

wherew (&) = /|A| + |£|2. Define
/a“%@JJLM@. (3.2)

R"

rU(x7 y5 ylv )“) = (2]1)”

Note thatr, is well defined since the above integral is absolutely convergeriyfar) #
(0, 0).
Observe first that by the following scaling argument it suffices to consider the case
A = 1 andlarg)r| < 0 < . Infact, the change of coordinates
/
£ M2y —r, V> 2o x> 3.3)
Al2 [A]2 [A]2

5 1 .(5 1 1, A
rv(ésyvy/v)")z_lrv 1> |)"|2y9 |)“|2y/7 T
A IA|2 |A]
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and hence

/ n-1 1 1 1, A
ro(x, v, ¥, A) = (AL 2y | A2, [A]2Yy, [A]2Y, o)
For this reason, we may suppose now that Xy with |A| = 1.
For z € C consider next the functiog given by

1—e¢2
b(2) = ; ., zeC\{0)

and note that
C
7)< ——, Rez>0
| (2)] 1117
for a suitable constar@ > 0. Thus

;1
FE .y ) = ye il eme®y T geT _ .
ro(&,y,y,2) =ye Ve |§|w(§)ifé P (@ (&) —1&EDY)

Choose now a rotatio® in R” such thatQx = (|x|, 0, ..., 0) and write
0t =(a,rb), a€R, r>0, beR' |p=1
By this coordinate transformation we obtain

o o
ro(x, Y,y A =cp | r"? elxla Y eIV rta?
v £ £ ) n O JA + r2 +a2\/r2 +a2

Sp—1 =0

.e_y/\/ A+r2+a2¢(y(\/)\ + r2 + 612 _ \/r2 + 02)) (rZT> (Cl rb)dadbdr

wheres,,_1 is the unit sphere iR,

121

(3.4)

(3.5)

Next, fore > 0 small enough, we shift the path of integration foto the contour
a— s+ie(r+|s|), s € R, without changing the value of the integral thanks to Cauchy’s

theorem. Then

Pt a®=r?+s%— sz(r + |s|)2 + 2ie(r + |s|)s.

Hence, giveryg > 0, there exists a constant- 0 such that foe € (0, g9) we have

1
clrP+a® < +IsPD?<=Ir®+d%, r>0, seR
C
and

larg(r® +a®)| <ce, r>0, sek.
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We thus obtain fox € R”, y > 0, y > 0 andA € Xy with |A| = 1 the bounds

ilxla) e ElxITish,

le

|e—yvr2+a2| < e U FIsh,
|e—y//\/|}»|+r2+a2| < e—cy’(l+r+|s|)’ |)\’| — 17 |arg)\’| S 9 < T(,

r+1s|
c
‘ |)»|—i—r2+a2 - 14+l

1 1
WIM+r2+a2 — V2 +a?] = >c :
2 147 +]s|

VA +r2+a?2+Vr7+a

Inserting these bounds into (3.5) yields for a multiindex

[(0)ry(x, y, ¥/, M)

) 00 1+|e|
M/rn_Z/e—c(r+s)(\x|+y+y/)ye—cy/% dsdr
l1+r+s+y

IA

—CS(|X\+)’+y )
_Mye_cy/ n- 2/ sl gsdr
14+s+y

—cs(|x[+y+y")

= Mye /s ntlal €
Y I+y+s

0

for some constan¥ > 0 independent af € R”, y,y’ > 0 andi € C with |A| = 1 and
largr| < 6 < . We thus have proved the following result.

PROPOSITION 3.1.Letd € (0, 7) anda be a multindex. Then there exist constants
M, ¢ > Osuch that

Sn+|ot|

0 ry(x, v, ¥ Ml = M e*ﬂy’/_efcs<|x\+y+y/)ds,
() ry(x, y, ¥y, )| < My TryTs

wherex € R”, y,y’ > 0andA € Cwith |[A| = 1and|argi| <0 < 7.

REMARK 3.2. Ford < 7 we definer, : R" x Ry x Ry x X9 — C" by

e By — gm0 @®)y g

- &)y’ (3.6)
w(&) — & w(§)

’:w(fa yv y/a)") =
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Copying the above proof we see that the assertion of Proposition 3.1 remainsryi if
replaced by, where

rw(x, y, Y, A) = /eix‘sfw(é, y, ¥, Md§, xeR" y,y >0. (3.7)

R"

2m)"

The kernel estimates given in Proposition 3.1 and Remark 3.2 allow us to derive
LP-estimates fow, and w; via the following lemma orL?-continuity of integral oper-
ators acting in half spaces.

LEMMA 3.3. Suppose that < p < oo and Iet% + % = 1. LetT be an integral

operator inLP(IR{Z’r*l) of the form

o0
(Tf)(x,y) = //k(x —x',y, V) f(', y)dx'dy', xeR" y>D0,
0 R
wherek : R” x Ry x Ry — C is a measurable function.
a) Letl < p < o0. If

P

e

o o ?
/ f IkCoy )T dy | dy | =:M1< oo,
o \o

thenT € L(LP(R™™)) and |7 || car@tty < M.
b) Letp = 1. If
o0

sup | [Ik(, y, Y)ll1dy =: M2 < o0,
y'>0

thenT € L(Ll(]R'errl)) and ”T”L(Ll(m“)) < M>.
C) Letp = oo. If
o
sup | [lk(-, y, Y)ll1dy" = M3 < oo,
y>0 9

+1
then? e LIL®(RL™) and T 2 sty < Ms.
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Proof. a) By Young'’s inequality and Blder’s inequality we have

l/£/|7yxx,ynpdxdy
0 R
| oo )4
=/1fwm%wamy»ow’dy
o o »
oo / o0 14
s‘/ (/|mc,thnunfc,y6npdy’ dy
0 \O

~Je

o0 o0
U1 s [ | [ 1RG0 | a.
0 0

The assertions b), ¢) are proved in a simliar way. O

Combining the estimates obtained in Proposition 3.1 and Remark 3.2 with Lemma 3.3 we
obtain the following estimates fap andwo.

PROPOSITION 3.4.Letl < p < oo andf € (0, ). Letvo andw2 be defined as in
(2.11). Then there exists a constamt > 0 such that

A

”vZHLI’(R’fl)" m”fv”Lp(jol)n

”wZHLP(RT'l) = m”fUHLP(RT-l)"
forall A € Zy.

Proof. Observe that fok € Xy

o
wwwzf/”u—%%%MﬁWJWﬁW,XGWJ>Q
0 R"?
where
mm»ﬂm=anwam%ﬂﬁ%§),er»M>o

andr, is satisfying the estimate given in Proposition 3.1. In order to prove the assertion,
we verify the conditions of Lemma 3.3 a) and c).
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To this end, note that
A
/I(ax)“rv(x v, ¥, M)ldx = IAIT/‘(ax)“ru (Iklfx Iklfy I)\I?y, |M)‘dx

o0

n+|ot| n—1 1
<c, |)»| nsl Wzyeﬂmz)y // 14 —cslAI?(ﬂ+y+y/)dpds
0 1+ |A|2y + s
S‘al 1 1 ’
< Cnlkl?ye_cmz-‘ / - _emesH2ZGH) g (3.8)
o 1+1aZy+s [A]2

00 1
by [ e eHZon)
SC,,ye*‘| 12y /—s‘“'ds

1
o L1HIAzy

—enBy Y 1
1 1 °
1+ A2y (A2 (y + y)tlel
Hence, if 1< p < co and|«| = 0, then

< Cpe

1 1
1
|A]2 |,\| (1+IA|2y)l’

fnrv( vy I Y < Crp—s

and

o o %
/ /”rv(', Y, ylr)")”i’ dy/) dy
0 0

o
ottt ka2
= an'Zz; |)x| lM%O (1+O-)p np A .

If p = o0, then
o0
//'rv('z ys y/v)")|d'Xdy/
e (3.9)
< Cn/e—c\my’dyu%. 11 < Cni;l
, 1+ a2y ey P14 a2y
and hence

o
n

C
sup [ liryCyy, ¥  Mllady < —
y>0 [A]

The estimate for,, follows in exactly the same way. O
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Note that the kernel estimate given in Proposition 3.1 does not allow to verify the assump-
tions of Lemma 3.3 b) for the cage= 1. We investigate this point in detail in Section 5.
Summing up we proved the following result:

THEOREM 3.5.Letl < p <00,0< 0 <mandi € Zy. Letf € Ll’(]R’}fl)”Jrl such
thatdivf = 0and f,+1),,, = 0. Letu = (v, w)T be defined as if2.11). Then there exists
a constantM > 0 such that

||u||Lp(R’_:_+1)n+l = m”f”Lp(RTrl)ner
For 1< p < oo andx > 0 consider the mapping
R(\) 1 LP(H) — LE(H), f+> u;,

whereu; is defined as in (2.11). Letd be the Stokes operator b (H) defined as in
Section 1. TherR(\)(L — A)f = fforall f € D(A) and(. — A)R(L) f = f for all
f e LE(H). Thus

RMN=X—-A)"1 i1>0.

Theorem 3.5 implies now the following well known result (see e.g. [Sol77], [McC81],
[Gig81], [FS96], [BS87], [Uka87], [GS89]).

COROLLARY 3.6. Letl < p < oco. Then the Stokes operatardefined as in Sectidh
generates an analytic strongly continuous semigroug.BaH )" 1.

4. The Stokes operator inBUC, (H), Co,c (H), L°(H)

In this section we define the Stokes operataB#iC, (H), Co,. (H), LS°(H) and show
that it is the generator of an analytic semigroup on these spaces (which is not strongly
continuous in the case @°(H)). To this end, define

BUC,(H):={f e BUC(H);divf =0, f(x1,...,%,,0) =0
forall x1,...,x, e R}

and
Cos(H) :={f € C(H); divf = 0) Il

Let X, (H) be one of the spaceBUC,(H) or Co,(H). Foré € (0,7) andAr € Xy
consider the mapping

RO Xo(H)"™ — L¥H)"TY, f s uy,

whereu;,, is the solution of the Stokes equation given in (2.11). Theorem 3.5 and a direct
calculation show thaR (1); A > 0} is a pseudo-resolvent i, (H)"+1.
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LEMMA 4.1. Let f € X, (H)"t1. Then
lim ARV f = f.

A—00

Proof. Notice first that

ROYfo = o= Ap) " Hfy +v200)
ROJfw = (h— Ap) L fu +wah),

whereA p denotes the Dirichlet Laplacian ang, w are defined as in (2.11). Sineep
generates &g-semigroup orBU C(H) or Co(H), respectively, it follows that

klim AA=—Ap)tf=f

forall f € X,(H). It thus remains to prove that lim,, Av2(A) = 0 in X, (H)" and
limy_ 00 Aw2(X) = 0in Xy (H).
In order to do so, note first that lim, o Av2(A) = 0in BUC,(H)" if and only if

o0
im sup/ / D2, G2y 312y G120

A—)0y>0

(4.1)

fox = x',y)dx'dy'| = 0.

Since

/” ACHED2p 28 a2y A2y 1y dx' = ARy (0, y, Y, A) =
it follows that (4.1) is satisfied provided

I|m sup A D2 M2y A2y 312y 1))

x>0 R"
| fox = x',y') = fu(x,0)|dx'dy" = 0.

But

oo
f AR, G2y AR D] o = 1Y) = fula, O)ldx'dy’

y/
/ ( ,\1/2’ A1/2) — fox.0)

< / / lro(x’, y, ¥, D]dx'dy’ - sup
0 R”

IX'|<R,|y'|<S
x/ y/
So (x - m, m) — folx, 0)

dx'dy’

127



128 WOLFGANG DESCH, MATTHIAS HIEBER AND JAN PRUSS J.evol.equ.

o0
+ [ / / o, v, ¥ Dldx'dy’
S Rn

00
+/ / |r,,(x’, Vs y/, 1)|dx/dy/] 2| folo
0 Jix|=R

1 1
<M sup fule =¥ ¥) = fulx. O + 2 fuloM (5*%)
WEﬂ%'W'fﬁ
forall S, R > 0 by (3.9) and since
o0 0o —cy' M
/ / o', y, ', Dldx'dy’ < M/ Cdy <
S R” S y S
by (3.8) and
) 00 / o y
/ |rv(x/, v, y/, 1)|dy/ < Mf e+ 0 ds
0 0 l1+y+sc+s

00 ’
< M/ e S lgn g
0

by the estimate given in Proposition 3.1 which implies that

o M
/ / lro(x’, vy, ¥, Didx'dy’ < —.
0 Ji¥I=R R

This implies the assertion ¥, (H) = BUC,(H). The case where ot, (H) = Co(H)
is proved in a similar way. O

The above lemma shows that k&) = O for all A > 0. Hence, there exists a closed,
densely defined operatdry, in X (H)"t1 such that

R(M) =0 —Ax,) a0

DEFINITION 4.2. The operatoA x, is called theStokes operator i, (H)" L

Theorem 3.5 implies now the following result.

THEOREM 4.3. The Stokes operataf x, generates a strongly continuous analytic
semigroup orX, (H)"*1.

Finally, we consider the solution of the Stokes equatichJt(H). This space is defined as
follows: Observe thaV acts as a bounded operator frott-1(H) into L1(H)"t1, where
WLi(H) = (f € L} (H); Vf e LY(H)}. HenceDiv := —V* is a bounded operator

from L (H)"*+! into WL1(H)*. We define

L (H)" ™ := keDiv.



Vol. 1, 2001 LP-Theory of the Stokes equation in a half space 129

Thusf € L°(H) ifand only if [, Vof = 0 for allp € WL1(H). Consider the mapping
R : LS;O(H)’hLl — L (H)"*1 defined as before. Theorem 3.5 and a direct calculation
implies that{R(1A); » > 0} is a pseudo-resolvent. In contrast to the situatiolXgf H)

we donot have that lim_, o Av2(A) = 0 in L°(H). However, the representation of the
remainder term given in Section 3 allows us to show thaRkey = 0 in L°(H) for alll

A > 0. Thus there exists a closed operatgg. in Lg"(H)’”rl such that

RO =0 —Ar=) 1 >0

We call the operatod ;. » the Stokes operator imgo(H)”“. Note thatA ;- is not densely
defined; however Theorem 3.5 implies the following result.

THEOREM 4.4.The Stokes operator;~ generates an analytic semigroup on
L (H)"*+1 (which is not strongly continuous B).

5. Thecasep =1

In this section we give an example of a functipre LY(R".™)"+1 satisfying divf = 0
such thatw, ¢ Ll(Ri“) wherews is defined as in Section 2. This is rather surprising
sinceu € LP(R:™)"+1 wheneverf e LP R+ with div f = 0 for all p € (1, o]
as we have seen in Section 2. More precisely, we have the following result.

THEOREM 5.1.Let0 < 6 < w andi € Zy. Then there existg = (f1, ..., fut1) €
L YR+ satisfying divf = 0 and f,41(x,0) = O for all x € R” such thatu ¢
Ll(R’fl)”“, wheren = (v, w) defined asii2.11) is the solution of the resolvent equation
(2.2)—(2.6).

We base the construction of our counterexample on well known properties of the Hardy
spaceH 1 (R"). We remind the reader that

HYR") ;= {f € L"R") : f* € L*'R™)}
where f* is given by

) = SUCI)OI(kz * )0, x eRY,
>

x2
and k, denotes the Gaussian kernel givenyx) = m 1)%e‘% (x € R", t > 0).
Tt
Equipped with the normi £ || y1gsy = I f*ll .1gn), the spaced 1(R") becomes a Banach

space. It is well known that ah®-function f belongs toH1(R") if and only if its Riesz
transformsk; f belong toL1(R") for all j € {1, ..., n}. This property ofd*(R") will be
of crucial importance for the following.
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Proof of Theorenb.1. Consider the Gaussian kerrigl for somer > 0. Thenk, ¢
HY(R") becausd* ¢ L1(R"). Thus, sinceé, € L1(R"), there existy € {1,...,n} such
thatR ik, & LY(R™). Fix j € {1, ..., n} with this property and define for e R", y > 0
andr > 0 the functionf,, : R — R by

0
fux,y) = 4Ty (05— (1= Ak (x), xeR', y>0.
J

HereT,,, denotes th&g-semigroup orL”(R"), 1 < p < oo generated by the pseudo-
differential operatort given byAf = —F ~L(w1 f), wherew1(§) = /1 + |£|2foré € R”.
Note that|| 7,,, (y)|| < Me™ for suitableM > 0 and ally > 0. Hence

o0 o0

/ ||fw(7 y)”ip(Ru) dy =< C/ype_yp dy < 00,

0 0
for suitableC > 0, which meansthaf,, LP(R’fl) forall p € [1, 00). Observe moreover
that

fulE.y) = 4ye= 1O (igpodE)e P £ R y >0
and

By foo (€. y) = (iE))Aad(E)e 8 (7@ _ g () ye 1®Y) = i&;5, (. y)

with g, € LP(R") for 1 < p < co. Setnowf = (fy, fu)" with f, == O, ..., —g,
0,...,0) so that thej-th component off, is —g,. Thus divf = 0, f € L/ (R )»+1

and(f - v)|,; = 0, wherev denotes the outer unit normal. Observe next that the functions
s fy®) = 4 ]o se 21O g i (E)e K ds = (e w16
§ > Wa(k.s) = —(:isj)m@)e—"f'?wl(s)+ ED[e™" ! —e7 @], 5 >0
£ Zo o(E, 5)ds = —@(ispwl@)e—”g'z = —%E—je—”f'z

all belong toL2(R™). It thus follows from Plancherel’s theorem that

/ wa(x, Ny = —F 1 (e ) (x),
0
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wherer; (&) = ié—jl for & £ 0. Hence

o
el sty = [ [ lwate iy
0

R”
o0

/ /wz(x,y)dy dx

R" 10

- / IF 20 (0e ) ()] dx
RH
||Rjkr||L1(Rn) = 00,

v

by the choice ofj at the beginning of this section. This implies the assertion.

REMARK 5.2. Itis an open problem to decide whether the assertion of Theorem 5.1
remains true if the half spadé is replaced by doundeddomain with smooth boundary.

We now turn our attention to gradient estimates inthenorm of the solution of the Stokes
equation as they were proved in [GMS99] in 1999. To this enfhlet 1 and note that by
(3.8) we have fota| = 1

o
SUP/O /|(3x)arv(x,y,y/,?»)|dxdy

y'>0

o0 o0
< C/ / Le_csydsdy
0 0 1 + y —+ s

0oy
= ZCf / S—ye_”ydsdy < 00.
0 o 1+y+s

Moreover, note that

T
AR, v,y 1) = —e0 @ iy £

w(§)
GRS w(&)€]

The first term on the right hand side above is estimated exactly in the same Way.as
order to treat the second term denote its inverse Fourier transforp bifor [A| = 1, we
obtain

o o0
Irvl(x,y,y/, 2| < M/ rn72/ e*C\x|(r+s)efc()'+y/)(1+r+s)&dsdr
0 0 1+r+s
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Thus

oo 0 poo 1
SUp/ / Iroa(x, y, y', Mldxdy < M/ / —— eI sdy < oo.
y'>0J0 n o Jo 1+

Lemma 3.3 b), a scaling argument and a simliar argument,fanplies now the following
result which was proved first in [GMS99].

PROPOSITION 5.3.There exists a constaM > 0 such that the solution of the Stokes
equation(1.1) with right hand sidef = 0 satisfies

M
IV, Il = 73 luoll1, t>0.

6. BoundedH *°-calculus

Givené € (0, ), we denote by *°(Zy) the Banach algebra of all bounded holomorphic
functionsf : ¥y — C equipped with the supremum norm. We also denote/§y(y)
the set of allg € H°°(Xy) such that there exist constariis> 0, s > 0 with

|z|*

Dl<c—
81 = C

ZGEQ.

Let noww € (0, 7) and letA be a closed, densely defined operator in a Banach space
X which is one to one and has dense range. Assumerthat C %, and that for every
o' € (w, ) there exists¥ > 0 such that

_ M —
I — A7 < ap e C\X,.

Letw <6 < 7. Then, giverg € H5®(Xy), the operator
1 -1
g(A) == ng()»)()» —A) "dx
Tl
r

is a well defined element af(X), whereI" denotes the positively oriented contdqur =
teti@’: 1 > 0} for somew’ € (w, H). Moreover, forz € Ty seth(z) := z(1+ z)~2. Then

F(A) = [hD]7X(fR)(A), fe H®(Zy)

is a well defined operator iX. Let0 < w < 6 < m. We say thatd admits a bounded
H®-calculus on the sectdty if f(A) € L(X) and there exists a constavit > 0 such that

If ey <Ml flloo,  f € HF(Ep). (6.1)
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It is well known, thatA satisfies (6.1) if there exist# > 0 such that

gz < Mliglloo, g € Hg” (Ep).

For details see [CDMY96]. Thus in deriving estimates §A), it suffices to establish
estimates fog(A), whereg € H3°(Zy).

For 1 < p < oo let A be the Stokes operator i’ (H)"*! defined as in Section 1.
We show in the following that- A admits a bounded *-calculus onL” (H)"+1 for every
sectorXy with 0 < 6 < 7. We start with the following lemma.

LEMMA 6.1. LetT be an integral operator of the form
o

(Th)(y) = f Ky ) fODAY. 3> 0, 62)
0

wherek : Ry x Ry — C is a measurable function such that the above integral is well
defined. Suppose that for some= (1, co) there exists a constat > 0 such that

M
ITHWI = 1 fller@yy,  y=>0.
yr

If T e L(L9(R)) for somegg € (p, o], thenT € L(LY(R,)) forall ¢ € (p, q0]-

Proof. By assumption7 f is dominated pointwise by a function belonging to the weak
LP-spacel.l,(Ry). ThusT : L?(Ry) — LY (R, ) is a bounded operator. The assumption
and the Marcinkiewicz interpolation theorem imply tHate L£(L4(R4)) for all g €

(P, qo]- O

COROLLARY 6.2. Letk : Ry x Ry — C be a measurable function. Suppose that
there exists > 0 such that

M
> log <1+§>, v,y > 0.

k(y, y)| <
I(yy)l_ij

LetT be defined as i66.2) and letl < p < oo. ThenT € L(L?(Ry)).

Proof. Note first that

T 7 log(1+ 2) gy 7 log (1
/ (0]
/|k<y,y’>|dy/ < f gy [9AF) 0
1+ } y’ 1+s)s
0 0 0

which implies thatl’ € L(L*°(R.)).
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If p>1lets + -1 =1 Forf e L?(R,) we obtain by Holder's inequality

1
7 log” (1+ 2ydy'\ "
T < M| | ——2—
TF)| < / R T
0
M Tlog”d+s) 1
og +s
- 5 [ R i e
Yro
M
< —<lflerey, y>0.
yl’
Thus the assertion follows from Lemma 6.1. O

Letnowh € Hy°(Xg) where O< 6 < m is fixed. Consider the function

1
kh,v(xv Yy, y/) = %/h()\')rv(xa Y, y/7 _)")d)"v X € an Yy, y/ > 0»
r

wherer, is defined as in (3.2) and := {pe™?, p > 0} with 0 < ¢ < . The estimate for
ry given in Proposition 3.1 yields

o0
kw3 < Cllhlle / ro(x. v, ¥ peti T dp

0
¥ PR o oosnefcp%s(IXHyﬂ")

< Clilla [ piyer™ | - dsdp
o 1+p2y+s

6.3)
00 00 ,
sy nefco(IXHery)

< Clilla [ye o™ 0" daap

5 pZ+py+o

=: Cllhl peka(x, y,y").

Now

IA

oo oo
/|k1(xay,y/)|dx Cn/ye_c’o Y /—dadp
R” 0

1
) p2+py+o

00 1

y e—cp2y

C n // T dp
YTV p2 4 py

x —csy’
- c2 /e ds, v,y >0.
y+y'J 1+sy
0

IA
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Splitting the latter integral at = Vi we obtain

1
[ yee [y Vo ey
/ ds < / ds + /e‘”y ds
1+sy 1+ sy 1+ 2
0 0 Y3

y

,
y ¥ y

log(1+Z)+Cc—2—<cClog(1+2).

g<+y’>+ 1+2 7 g<+y/>

IA

7

y
This implies that

C
/ lk1(x, vy, y)|dx < - log (1—}- 1/) , v,y >0. (6.4)
y+vy y
Rn
Define now the operatdf; , in L” (R") by
o0
(T )(x,y) = /fkh,v(x —x", v, N f(x', ydx'dy’, xeR",y>0. (6.5)
0 Rﬂ
Then, by Young's inequality, (6.3), (6.4) and Corollary 6.2 we have

00 00 p

f/|(Th,vf)<x,y>|dedysf WGy YL F Gyl dy' | dy
0

0 R” 0
oo / o0 P

1 y
scnhni,w/ /Hy/ log (1+;) 1F Gl dy' | dy (6.6)
0 0

< Clhllg=llf1I7

Lp(Rﬂ++l)'
Moreover, by Remark 3.2 the functiof), defined as in (3.7) satisfies also an estimate of
the form given in Proposition 3.1. Thus, the function,, defined by

1
kh,w(xa Y, y/) = Z_/h()\')rw(xv Y, y/a _)‘-)d)\" X € Rl’l’ Y, yl > 0
Tl
r
also satisfies

lkn,w(x, y, )| < Cllhllpoki(x, y,¥), x€R", y,y >0.

Define the operatof}, ,, as in (6.5) withk, , replaced byk; ,,. We conclude thaf}, ,,

satisfies estimate (6.6).

Finally note that the operaterA p admits a bounded *°(Xy)-calculus onLP(IR{’}r“)
for every6 € (0, ). This follows from Corollary 7.3 below or by the results proved in
[PS93]. This fact and (6.6) imply the following result.
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THEOREM 6.3.Let1 < p < oo and letA be the Stokes operator in defined as in
LP (R +1 Then—A admits a bounded! * (Z,)-calculus onL” (R%1)"+1 for each
0 € (0, 7).

As a consequence we obtain by the Dore-Venni theorem maxifial 4 -estimates for
the solution of the Stokes equation (see also [GS91], [Gig85]).

7. R-bounded H>-calculus for —A on R"+! and R+

R-bounded families of operators play an important role in the variant of the Dore-
Venni theorem which has been recently proved by Kalton and Weis [KWO00]. They are
defined as follows: leX andY be Banach spaces. We call a family of operatbrs-
L(X,Y) R-bounded if there is a constan€ > 0 andp € [1, co) such that for each
N eN,T; € T,x; € X and all independent, symmetiie-1, 1}-valued random variables
£j on a probability spac&?, M, u) we have

N N
ZSjzj]‘ <C- Zijj'
j=1

LP(Q:Y) j=1 LP(:X)

The smallest suclt’ is called theR-boundof 7 and is denoted by (7). For detailed
information on this subject and its relation to maxinidl-regularity and toL”-Fourier
multipliers, we refer to [CAPSWO00], [Wei99] and [CP00].

REMARK 7.1. a) LetX andY be Hilbertspaces. Theh c L£(X; Y)is R-bounded
if and only if 7 is uniformly bounded.

b) Letl1 < p < wandletX =Y = LP(G) for someG C R" open. Then
T C L(X,Y) is R-bounded if and only if there is a constavtt > 0 such that the
following square function estimate

1

1
2 2

N
=M | 1512 (7.1)
j=1

LP(G) B LP(G)

N
ST £
j=1

holds for eachv e N, f € L?(G) andT; € 7.
This assertion is a coinsequencetiintchine’s inequality For p € [1, oo) there
exists a constark’, > 0 such that

1
2

N N N
-1 2
N PIUL IS DI By 3 DI

=1 e VL =1 LP()
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forall N € N,a; € C and all independent, symmetrie-1, 1}-valued random
variabless; on (2, M, ).

LetQ c R"” openandlet kx p < co. Assume that a given operatarin L? ($2)
admits a bounded *°-calculus onL” (2) for some sectoEy with 0 < 6 < 7. By
the recent results given in [KWO0Q] it is an interesting question to ask whether or not
the set

{h(A) : h € H5®(Zo), Ihl H(zy) < R} C LILP(Q)) (7.2)

is R-bounded. If this holds true, we say thatadmits ankR-boundedH *°-calculus
on L?(Q2) for the sectorxy.

Ouir first result in this section asserts thah on L?(R"), whereA denotes the
Laplacian, admits aR-boundedH *°-calculus onL?” (R") for each sectoEy where
0 < 6 < . More precisely, the following holds true.

THEOREM 7.2.Let1 < p < oo and denote byA the Laplacian inR*. Then—A
admits anR-boundedH *°-calculus onL? (R") on the sectoly for0 < 0 < 7.

Proof. Leth € H3°(2g), where O0< 6 < m. Then the Fourier transform @fi—A) is
given byh(|€|?) for & € R". The kernek;(-) corresponding ta(| - |2) is given by

k() = fe"xthaz)ds, x € R,

R"

(2m)"

Choosing a rotatiorQ such thatQx = (|x|,0,...,0) and writing Q¢ = (a, rb), with
aeR, r>0,beR" L |b|=1we obtain

o0 (o)
kn(x) = ¢y / P12 / h(r? + a®e'™dadr, x e R™.
0 —00

Next we deform the contour of integration via Cauchy’s theorem to

a=s+ie(r+|s]), r>0s5ekR

We then obtain

2 2
_ 2¢e|s|(r + |s]) _ de(rc + 5%) < e,
r2+5s2—e2(r+sP)? T (1—2e2)(r2+52) ~

Im(r2 + az)
Re(Z + a?)
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which implies that for small enough our new contour stays insikdg Thus

o0 o0
k)| < C / -2 / e+ g
0 0
o
< C||h||Hoo/|x|1*"e*6'x“fds = c”}"in“’, x € RM\{0}.
J x|
Similarly,

|D%kp(x)] < Callhll o x € R"\{0}

|x|n+|a| ’
for each multiindexx. If |x| > 2|y| we obtain

1

d
e (6 — 3) — ki ()] = / (e~ e
0

1
dr B
_|y|/|x_ty|n+1|| I~ < CoBplhl
0

This implies that forR > 0 the uniform Hbrmander condition is satisfied, i.e.:

sup  lkp(x —y) — kn(x)ldx

120y 7]l oo <R
N (7.3)
dx dr
lxI>2|yl 2|yl

SinceA = —A is selfadjoint inL?(R") we see that the set
{h(A) 1 h € HS®(Z9), Ihllge(zy) < R} C LILARM)

is uniformly bounded. By Remark 7.1 a) and 7.1 b) it follows that there is a corGtand
such that

N
> IH; fil?
j=1

1 1

1 y 1
<CR|| Y 1£?
j=1

2
L2(R") B L2(R™)
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for N e N, Hj := hj(A), hj € HJ°(Zp), llhjllge(z,) < R. SetnowX = lé"(N) and
definexK : LP(R", X) — LP(R", X) by

(Kf)i'=Hf;, i=1...,N.

The uniform Hhrmander condition (7.3) implies that

/ IK(x —y)— K(x)||dx < CR.
[x|>2]y|

Sincek acts as a bounded operatorlof(R"; X), the Benedek-Calderon-Panzone theorem
(see e.g. [Hie99]) implies tha is L”-bounded for 1< p < oco. This means that there is
a constanC > 0 such that

1
2

2

N N
> IHj £l <c | DoIA1?
j=1 j=1

LP(RY) LP(R")
Remark 7.1 b) implies that the set

{h(A) :h € Hy*(Zp), Ihllmocsy) < R} C LILP(RY))
is R-bounded for allR > 0 and all 0< 6 < . O

COROLLARY 7.3. Letl < p < oo. Denote byA p the Dirichlet Laplacian inIR{'f“l.
Then—Ap admits anR-boundedH *° (Zy)-calculus onLP(Rf’jl) for eachd € (0, ).

Proof. The resolvent of the Dirichlet Laplaciaip in R’jfl may be written as
(A+Ap) Lt =Py(h+ A)1Eg— PoR(L+ A)"LEg, 1 e C\Zy,

whereA denotes the Laplacian iR" ™, Eq denotes extension by 0 ®'*1, Py the pro-
jection fromR"+* to R"" and R the reflection in the normal coordinage Therefore we
have forh € H*®(Zy)

h(—Ap) = Poh(—A)Eg — PoRh(—A)Ep.

The assertion thus follows from Theorem 7.2. O
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We finally turn our attention to the remainder term of the Stokes operator as defined in
Section 5. We start with the following proposition.

PROPOSITION 7.4letl < p <o00,G C R" beopenand le¥ = (T, : p € M} C
L(LP(2)) be a family of integral operators of the form

(T f)(x) = / k(e ) f )y, x € G, f € LP(G),

G

such that there exists a functiéag with
|k (x, )| < ko(x,y), faax,yeGeM.

Forx € Gset(Tof)(x) = fG ko(x, y) f(y)dy. If To € L(LP(G)), then7 C L(LP(G))is
R-bounded.

Proof. Due to Remark 7.1 b) it suffices to verify the square function estimate (7.1). But
this follows easily from thd.”-boundedness of the dominating oper&fgr O

Combining (6.5), (6.6) and Corollary 6.2 with Proposition 7.4 we obtain the following
result.

COROLLARY 7.5. Letl < p < 00,0 < 0 < 7. Letky, andk;,,, be defined as in
Sections. For i € H(°(%y) define operatord, , and T}, ,, as in(6.5). LetR > 0. Then
the sets

{Tho h € HE(Z6), |hllp=(s,) < R} C LILP(R™HY)
{Thow = h € HE(Zg), 1A ao(sy) < R} C LILP (R

are R-bounded.

Summarizing, we proved the following result.

THEOREM 7.6. Letl < p < oo. Denote byA the Stokes operator ihf,’(RTl). Then
—A admits anR-boundedH *°(Zy)-calculus onLé’(R’jfl) for eachd € (0, 7).
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